martes, 7 de junio de 2011

Diferencia de Potencial Eléctrico

Considérese una carga de prueba positivaDescripción: q_0 \,\!  en presencia de un campo eléctrico y que se traslada desde el punto A al punto Bconservándose siempre en equilibrio. Si se mide el trabajo que debe hacer el agente que mueve la carga, la diferencia de potencial eléctricose define como:
Descripción: V_B - V_A= \frac {W_{AB}}{q_0} \,\!
El trabajo Descripción: W_{AB} \,\! puede ser positivo, negativo o nulo. En estos casos el potencial eléctrico en B será respectivamente mayor, menor o igual que el potencial eléctrico en A. La unidad en el SI para la diferencia de potencial que se deduce de la ecuación anterior es Joule/Coulomb y se representa mediante una nueva unidad, el voltio, esto es: 1 voltio = 1 joule/coulomb.Un electronvoltio (eV) es la energía adquirida para un electrón al moverse a través de una diferencia de potencial de 1 V, 1 eV = 1,6x10-19 J. Algunas veces se necesitan unidades mayores de energía, y se usan los kiloelectronvoltios (keV), megaelectronvoltios (MeV) y los gigaelectronvoltios (GeV). (1 keV=103 eV, 1 MeV = 106 eV, y 1 GeV = 109 eV). Aplicando esta definición a la teoría de circuitos y desde un punto de vista más intuitivo, se puede decir que el potencial eléctrico en un punto de un circuito representa la energía que posee cada unidad de carga al paso por dicho punto. Así, si dicha unidad de carga recorre un circuito constituyendóse en corriente eléctrica, ésta irá perdiendo su energía (potencial o voltaje) a medida que atraviesa los diferentes componentes del mismo. Obviamente, la energía perdida por cada unidad de carga se manifestará como trabajo realizado en dicho circuito (calentamiento en una resistencia, luz en una lámpara, movimiento en un motor, etc.). Por el contrario, esta energía perdida se recupera al paso por fuentes generadoras de tensión. Es conveniente distinguir entre potencial eléctrico en un punto (energía por unidad de carga situada en ese punto) y corriente eléctrica (número de cargas que atraviesan dicho punto por segundo).
Usualmente se escoge el punto A a una gran distancia (en rigor el infinito) de toda carga y el potencial eléctrico Descripción: V_A \,\! a esta distancia infinita recibe arbitrariamente el valor cero. Esto permite definir el potencial eléctrico en un punto poniendo Descripción: V_A =0 \,\! y eliminando los índices:

Descripción: V=\frac {W}{q_0} \,\!
siendo Descripción: W \,\! el trabajo que debe hacer un agente exterior para mover la carga de prueba Descripción: q_0 \,\! desde el infinito al punto en cuestión. Obsérvese que la igualdad planteada depende de que se da arbitrariamente el valor cero al potencial Descripción: V_A \,\! en la posición de referencia (el infinito) el cual hubiera podido escogerse de cualquier otro valor así como también se hubiera podido seleccionar cualquier otro punto de referencia. También es de hacer notar que según la expresión que define el potencial eléctrico en un punto, el potencial en un punto cercano a una carga positiva aislada es positivo porque debe hacerse trabajo positivo mediante un agente exterior para llevar al punto una carga de prueba (positiva) desde el infinito. Similarmente, el potencial cerca de una carga negativa aislada es negativo porque un agente exterior debe ejercer una fuerza (trabajo negativo en este caso) para sostener a la carga de prueba (positiva) cuando esta (la carga positiva) viene desde el infinito. Por último, el potencial eléctrico queda definido como un escalar porque Descripción: W \,\! y Descripción: q_0 \,\! son escalares. Tanto Descripción: W_{AB} \,\! como Descripción: V_B-V_A \,\! son independientes de la trayectoria que se siga al mover la carga de prueba desde el punto A hasta el punto B. Si no fuera así, el punto B no tendría un potencial eléctrico único con respecto al punto A y el concepto de potencial sería de utilidad restringida.
Es posible demostrar que las diferencias de potencial son independientes de la trayectoria para el caso especial representado en la figura. Para mayor simplicidad se han escogido los puntos A y B en una recta radial. Una carga de prueba puede trasladarse desde A hacia B siguiendo la trayectoria I sobre una recta radial o la trayectoria II completamente arbitraria. La trayectoria II puede considerarse equivalente a una trayectoria quebrada formada por secciones de arco y secciones radiales alternadas. Puesto que estas secciones se pueden hacer tan pequeñas como se desee, la trayectoria quebrada puede aproximarse a la trayectoria II tanto como se quiera. En la trayectoria II el agente externo hace trabajo solamente a lo largo de las secciones radiales, porque a lo largo de los arcos, la fuerza Descripción: \vec F \,\!y el corrimiento Descripción: \vec dl \,\! son perpendiculares y en tales casos Descripción: \vec F \, d\vec l \,\! es nulo. La suma del trabajo hecho en los segmentos radiales que constituyen la trayectoria II es el mismo que el trabajo efectuado en la trayectoria I, porque cada trayectoria está compuesta del mismo conjunto de segmentos radiales. Como la trayectoria II es arbitraria, se ha demostrado que el trabajo realizado es el mismo para todas las trayectorias que unen A con B. Aun cuando esta prueba sólo es válida para el caso especial ilustrado en la figura, la diferencia de potencial es independiente de la trayectoria para dos puntos cualesquiera en cualquier campo eléctrico. Se desprende de ello el carácter conservativo de la interacción electrostática el cual está asociado a la naturaleza central de las fuerzas electrostáticas. Para un par de placas paralelas en las cuales se cumple queDescripción: {V}={Ed} \,\!, donde d es la distancia entre las placas paralelas y E es el campo eléctrico constante en la región entre las placas.

Voltímetro: Un voltímetro es aquel aparato o dispositivo que se utiliza a fin de medir, de manera directa o indirecta, la diferencia potencial entre dos puntos de un circuito eléctrico. Se usa tanto por los especialistas y reparadores de artefactos eléctricos, como por aficionados en el hogar para diversos fines; la tecnología actual ha permitido poner en el mercado versiones económicas y al mismo tiempo precisas para el uso general, dispositivos presentes en cualquier casa de ventas dedicada a la electrónica.
Biografía de Alessandro Volta: (Como, actual Italia, 1745-id., 1827) Físico italiano. En 1775, su interés por la electricidad le llevó a inventar un artefacto conocido como electróforo, empleado para generar electricidad estática. Un año antes había sido nombrado profesor de física del Colegio Real de Como. En 1778 identificó y aisló el gas metano, y al año siguiente pasó a ocupar la cátedra de física de la Universidad de Pavía. En 1780, un amigo de Volta, Luigi Galvani, observó que el contacto de dos metales diferentes con el músculo de una rana originaba la aparición de corriente eléctrica. En 1794, Volta comenzó a experimentar con metales únicamente, y llegó a la conclusión de que el tejido animal no era necesario para producir corriente. Este hallazgo suscitó una fuerte controversia entre los partidarios de la electricidad animal y los defensores de la electricidad metálica, pero la demostración, realizada en 1800, del funcionamiento de la primera pila eléctrica certificó la victoria del bando favorable a las tesis de Volta. Un año más tarde, el físico efectuó ante Napoleón una nueva demostración de su generador de corriente. Impresionado, el emperador francés nombró a Volta conde y senador del reino de Lombardía. El emperador de Austria, por su parte, lo designó director de la facultad de filosofía de la Universidad de Padua en 1815. La unidad de fuerza electromotriz del Sistema Internacional lleva el nombre de voltio en su honor desde el año 1881.

No hay comentarios:

Publicar un comentario en la entrada